
Python for Physicists

Chapter 5. Loops

for Loops

For loops iterate over a collection of items:

for number in [2,3,5]: # for loop over the collection [2,3,5]
 print(“my number = “,number) # body of the for loop

Output:

my number = 2
my number = 3
my number = 5

Statements in body of loop must be indented by same amount

primes = [2, 3, 5, 7, 11] # define a list of prime numbers
print(" prime square cube") # print a header labeling each data column
for p in primes: # for loop, p will loop over elements of primes
 squared = p**2 # calculate square of p
 cubed = p**3 # calculate cube of p
 print(f" {p:2d} {squared:3d} {cubed:4d}”)
print(“done”)

Output: prime square cube
 2 4 8
 3 9 27
 5 25 125
 7 49 343
 11 121 1331

Loop over list of non-numeric items

word_list = ['top','quark','gravity','radiation', 'electromagnetic','pion']

for word in word_list:
 print(f" {word:^15}")

Output:
 top
 quark
 gravity
 radiation
 electromagnetic
 pion

Use range(start,stop,step) to iterate over integers

for n in range(5):
 print("n =",n)

n = 0
n = 1
n = 2
n = 3
n = 4

for n in range(3,8):
 print("n =",n)

n = 3
n = 4
n = 5
n = 6
n = 7

for n in range(0,10,2):
 print("n =",n)

n = 0
n = 2
n = 4
n = 6
n = 8

Use enumerate() to return value and index

primes = [2, 3, 5, 7, 11] # define a list of prime numbers
for i,p in enumerate(primes): # for loop, i = array imdex
 print(f"index = {i} prime = {p}”) # print index and value

index = 0 prime = 2
index = 1 prime = 3
index = 2 prime = 5
index = 3 prime = 7
index = 4 prime = 11

Output:

enumerate() example

A = [2,5,8,3.14,'a','b'] # define list containing multiple data types

int_type = [] # int_type will be a list containing indexes of
 # integers in the array. Initialize to empty list

for i,a in enumerate(A): # loop over elements in list A
 if type(a) is int: # check to see if the element is an integer
 int_type.append(i) # if it is, add the index to our list
print("list of indices containing integer data: ",int_type)

list of indices containing integer data: [0, 1, 2]Output:

Use zip() to loop over multiple lists

mass = [0.1, 0.5, 0.9, 2.3] # masses
vel = [2.3, 1.2, 3.6, 5.5] # velocity

KE = [] # set kinetic energy list to empty list
for m,v in zip(mass, vel): # loop over both mass and velocity lists
 KE.append(0.5*m*v**2) # calculate and add KE to KE list
 print(f"m = {m} v = {v} KE = {KE[-1]:5.2f}")

m = 0.1 v = 2.3 KE = 0.26
m = 0.5 v = 1.2 KE = 0.36
m = 0.9 v = 3.6 KE = 5.83
m = 2.3 v = 5.5 KE = 34.79

Output:

Accumulator Pattern:

• The Accumulator Pattern consists of a loop and an accumulator variable.
• On each iteration of the loop, the accumulator variable "accumulates" or "gathers"

information from the loop

Accumulator Example: Summing integers 1 to 10

N = 10 # N = upper limit of sum

total = 0 # total = accumulator = sum of integers
for i in range(1,N+1): # loop over integers 1 to N
 total = total + i # add i to the running total

print("sum of integers from 1 to",N,"is",total)

sum of integers from 1 to 10 is 55

• The Accumulator Pattern consists of a loop and an accumulator variable.
• On each iteration of the loop, the accumulator variable "accumulates" or "gathers"

information from the loop

Output:

Accumulator Example: Extending a list

my_list = [1] # initialize the list with 1

for n in range(10): # Loop 10 items
 my_list.append(my_list[-1]*2) # next item = previous item * 2

print(my_list)

[1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

• Create a list where each item in the list is twice the value of the previous item,
starting with 1

Output:

Nested Loops

for row in range(0,100,10): # loop over rows
 for col in range(1,11): # loop over columns
 product = row + col # sum of the row and col
 print(f"{product:3d} ",end="") # print with no line feed
 print() # start a new line after

 1 2 3 4 5 6 7 8 9 10
 11 12 13 14 15 16 17 18 19 20
 21 22 23 24 25 26 27 28 29 30
 31 32 33 34 35 36 37 38 39 40
 41 42 43 44 45 46 47 48 49 50
 51 52 53 54 55 56 57 58 59 60
 61 62 63 64 65 66 67 68 69 70
 71 72 73 74 75 76 77 78 79 80
 81 82 83 84 85 86 87 88 89 90
 91 92 93 94 95 96 97 98 99 100

Output:

While Loops

p = 1 # initialize power
while p < 100: # loop while power is less than 100
 print(p) # display current value
 p = p * 2 # multiply power by 2

While loops iterate while some condition remains true:

Example: print all powers of 2 less than 100
• We know , so we'll initialize our first power “p” as 1
• Inside our loop, we'll keep multiplying the previous value by 2 to get the
next higher power

• Notice we must do the multiplication **after** we print the power. Why is
this?

20 = 1

Output: 1
4
9
16
25
64

List Comprehension

squares = [x**2 for x in range(10)]
print(squares)

List comprehension is a “fancy” way of combining for loops and lists on a single line of code

[expression for item in iterable if condition]

Output: [1, 4, 9, 16, 25, 64, 81]

Here’s the pattern:

Here’s an example of creating a list of squares from 0 to 9 :

