Chapter 5. Loops

import numpy as np

me = 9.11le-31 # mass of electron
c = 299792458 # speed of light
u =0.1*c # particle velocity

gamma = 1 / np.sqrt(1-(u/c)**x2) # gamma factor

KE = (gamma-1) * me * Cx*2 # relativistic kinetic energy

Python for Physicists

for Loops

For loops iterate over a collection of items:

for number in [2,3,5]: # for loop over the collection [2,3,5]
print (“my number = “,number) # body of the for loop

Output:

my number = 2
my number =
my number = 5

w

Statements in body of loop must be indented by same amount

primes = [2, 3, 5, 7, 11] # define a list of prime numbers

print(" prime square cube") # print a header labeling each data column

for p in primes: # for loop, p will loop over elements of primes
squared = p**2 # calculate square of p
cubed = p**3 # calculate cube of p
print(f" {p:2d} {squared:3d} {cubed:4d}")

print (“done”)

Output: prime square cube
2 4 8
3 9 27
5 25 125
7 49 343

11 121 1331

Loop over list of non-numeric items

word list = ['top', 'quark', 'gravity', 'radiation', 'electromagnetic', 'pion']

for word in word list:
print (£" {word:"15}")

Output:
top
quark
gravity
radiation
electromagnetic
pion

Use range(start,stop,step) to iterate over integers

for n in range(5): for n in range(3,8): for n in range(0,10,2):

print("n =",n) print("n =",n) print("n =",n)

B 8B B B85
| R | |
> W N K- O
B B8 B8 B85
| | R | |
N oy O W
B B8 B BB
| | R | |
0 o N O

Use enumerate() to return value and index

primes = [2, 3, 5, 7, 11] # define a list of prime numbers
for i,p in enumerate(primes): # for loop, i = array imdex
print(f"index = {i} prime = {p}”) # print index and value
Output: index = 0 prime = 2
index = 1 prime = 3
index = 2 prime = 5
index = 3 prime = 7
index = 4 prime = 11

enumerate() example

A=12,5,8,3.14,"'a','b"] # define list containing multiple data types

int type = [] # int type will be a list containing indexes of
integers in the array. Initialize to empty list

for i,a in enumerate(A): # loop over elements in list A
if type(a) is int: # check to see if the element is an integer
int type.append(1i) # if it is, add the index to our list
print("list of indices containing integer data: ",int type)

Output: list of indices containing integer data: [0, 1, 2]

Use zip() to loop over multiple lists

mass = [0.1, 0.5, 0.9, 2.3] # masses
vel = [2.3, 1.2, 3.6, 5.5] # velocity
KE = [] set kinetic energy list to empty list

#

for m,v in zip(mass, vel): # loop over both mass and velocity lists
KE.append(0.5*m*v**2) # calculate and add KE to KE list
print(f"m = {m} v = {v} KE = {KE[-1]:5.2f}")

Output: m=20.1 v=2.3 KE= 0.26
m=0.5 v=1.2 KE-= 0.36
m=0.9 v=23.6 KE-= 5.83
m=2.3 v=25.5 KE-=34.79

Accumulator Pattern:

* The Accumulator Pattern consists of a loop and an accumulator variable.
* On each iteration of the loop, the accumulator variable "accumulates" or "gathers"
information from the loop

Accumulator Example: Summingintegers1to10

* The Accumulator Pattern consists of a loop and an accumulator variable.
* On each iteration of the loop, the accumulator variable "accumulates" or "gathers"
information from the loop

N = 10 # N = upper limit of sum
total = 0 # total = accumulator = sum of integers
for i in range(l,N+1): # loop over integers 1 to N

total = total + i # add i to the running total

print("sum of integers from 1 to",N,"is",total)

Output: sum of integers from 1 to 10 is 55

Accumulator Example: Extending a list

* Create a list where each item in the list is twice the value of the previous item,
starting with 1

my list = [1] # initialize the list with 1

for n in range(10): # Loop 10 items
my list.append(my list[-1]%*2) # next item = previous item * 2

print(my_ list)

Output: (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

Nested Loops

for row in range(0,100,10): # loop over rows
for col in range(l,11): # loop over columns
product = row + col # sum of the row and col
print(f"{product:3d} ",end="") # print with no line feed
print() # start a new line after
Output: 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

While Loops

While loops iterate while some condition remains true:

Example: print all powers of 2 less than 100
eWe know 2°=1, so we'll initialize our first power “p” as 1

* Inside our loop, we'll keep multiplying the previous value by 2 to get the
next higher power

* Notice we must do the multiplication **after** we print the power. Why is

this?
1
p =1 # initialize power Output 4
while p < 100: # loop while power is less than 100 9
print(p) # display current value 16
p=p * 2 # multiply power by 2 25

64

List Comprehension

List comprehension is a “fancy” way of combining for loops and lists on a single line of code

Here’s the pattern:

[expression for item in iterable if condition]

Here’s an example of creating a list of squares from O to 9 :

squares = [x**2 for x in range(10)]
print (squares)

Output: (1, 4, 9, 16, 25, 64, 81]

